翻訳と辞書
Words near each other
・ Membrane fouling
・ Membrane fusion protein
・ Membrane gas separation
・ Membrane glucocorticoid receptor
・ Membrane glycoproteins
・ Membrane keyboard
・ Membrane lipids
・ Membrane method
・ Membrane mineralocorticoid receptor
・ Membrane mirror
・ Membrane models
・ Membrane nanotube
・ Membrane osmometer
・ Membrane oxygenator
・ Membrane paradigm
Membrane potential
・ Membrane Pro-X carboxypeptidase
・ Membrane progesterone receptor
・ Membrane protein
・ Membrane Protein Structural Dynamics Consortium
・ Membrane reactor
・ Membrane roofing
・ Membrane ruffling
・ Membrane sex steroid receptor
・ Membrane stabilizing effect
・ Membrane steroid receptor
・ Membrane structure
・ Membrane switch
・ Membrane technology
・ Membrane Theory


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Membrane potential : ウィキペディア英語版
Membrane potential

Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. With respect to the exterior of the cell, typical values of membrane potential range from –40 mV to –80 mV.
All animal cells are surrounded by a membrane composed of a lipid bilayer with proteins embedded in it. The membrane serves as both an insulator and a diffusion barrier to the movement of ions. Ion transporter/pump proteins actively push ions across the membrane and establish concentration gradients across the membrane, and ion channels allow ions to move across the membrane down those concentration gradients. Ion pumps and ion channels are electrically equivalent to a set of batteries and resistors inserted in the membrane, and therefore create a voltage difference between the two sides of the membrane.
Virtually all eukaryotic cells (including cells from animals, plants, and fungi) maintain a non-zero transmembrane potential, usually with a negative voltage in the cell interior as compared to the cell exterior ranging from –40 mV to –80 mV. The membrane potential has two basic functions. First, it allows a cell to function as a battery, providing power to operate a variety of "molecular devices" embedded in the membrane. Second, in electrically excitable cells such as neurons and muscle cells, it is used for transmitting signals between different parts of a cell. Signals are generated by opening or closing of ion channels at one point in the membrane, producing a local change in the membrane potential. This change in the electric field can be quickly affected by either adjacent or more distant ion channels in the membrane. Those ion channels can then open or close as a result of the potential change, reproducing the signal.
In non-excitable cells, and in excitable cells in their baseline states, the membrane potential is held at a relatively stable value, called the resting potential. For neurons, typical values of the resting potential range from –70 to –80 millivolts; that is, the interior of a cell has a negative baseline voltage of a bit less than one-tenth of a volt. The opening and closing of ion channels can induce a departure from the resting potential. This is called a depolarization if the interior voltage becomes less negative (say from –70 mV to –60 mV), or a hyperpolarization if the interior voltage becomes more negative (say from –70 mV to –80 mV). In excitable cells, a sufficiently large depolarization can evoke an action potential, in which the membrane potential changes rapidly and significantly for a short time (on the order of 1 to 100 milliseconds), often reversing its polarity. Action potentials are generated by the activation of certain voltage-gated ion channels.
In neurons, the factors that influence the membrane potential are diverse. They include numerous types of ion channels, some of which are chemically gated and some of which are voltage-gated. Because voltage-gated ion channels are controlled by the membrane potential, while the membrane potential itself is influenced by these same ion channels, feedback loops that allow for complex temporal dynamics arise, including oscillations and regenerative events such as action potentials.
==Physical basis==
The membrane potential in a cell derives ultimately from two factors: electrical force and diffusion. Electrical force arises from the mutual attraction between particles with opposite electrical charges (positive and negative) and the mutual repulsion between particles with the same type of charge (both positive or both negative). Diffusion arises from the statistical tendency of particles to redistribute from regions where they are highly concentrated to regions where the concentration is low (due to thermal energy).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Membrane potential」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.